Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Q-Learning

Now, let's try to program a reinforcement learning agent using Q-learning. Q-learning consists of a Q-table that contains Q-values for each state-action pair. The number of rows in the table is equal to the number of states in the environment and the number of columns equals the number of actions. Since the number of states is 16 and the number of actions is 4, the Q-table for this environment consists of 16 rows and 4 columns. The code for it is given here:

print("Number of actions : ",env.action_space.n)print("Number of states : ",env.observation_space.n)----------------------Number of actions : 4 Number of states : 16

The steps involved in Q-learning are as follows:

  1.  Initialize the Q-table with zeros (eventually, updating will ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content