Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Summary

In this chapter, we covered the building blocks, such as shallow and deep neural networks that included logistic regression, single hidden layer neural network, RNNs, LSTMs, CNNs, and their other variations. Catering to the these topics, we also covered multiple activation functions, how forward and backward propagation works, and the problems associated with the training of deep neural networks, such as vanishing and exploding gradients.

Then, we covered the very basic terminologies in reinforcement learning that we will explore in detail in the coming chapters. These were the optimality criteria, which are value function and policy. We also gained an understanding of some reinforcement learning algorithms, such as Q-learning and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content