Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Go versus chess

In 1997, IBM's DeepBlue defeated the then world champion Gary Kasparov in the game of chess. Almost two decades later, Google DeepMind's AI program AlphaGo defeated the 9-dan Go player and former world champion Lee Sedol. In order to understand the giant leap and achievement of Google DeepMind through AlphaGo, let's first understand the difference between these two games and then the architecture used behind the AI of DeepBlue and AlphaGo.

Both chess and Go need two players. In chess, each player has sixteen pieces that are of six different types possessing different strengths as per the game rules. The goal is to capture the opponent's King. On the other hand, Go starts with a blank board where each player places a stone ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content