Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Online case-based planning

Case-based reasoning consists of four steps:

  • Retrieve

  • Reuse

  • Revise

  • Retain

These steps are illustrated in the following image:

Case-based reasoning

In the retrieval step, a subset of cases that are relevant to the problem are selected from the case base. In the reuse step, the solution as per the cases selected is adapted. Then, in the revision step, the adapted solution is verified through testing it in a real-world environment and observes a feedback quantifying the accuracy of the predicted solution. The retention step decides whether or not to store this new solved case in the case base. Thus, case-based ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content