Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Challenges in robot reinforcement learning

Applications of reinforcement learning in robotics include:

  • Locomotion
  • Manipulation
  • Autonomous machine control

As discussed previously, in order for a reinforcement learning agent to perform better in a real-world task it should have a well-defined, domain-specific reward function, which is hard to implement. This problem is being tackled by using techniques such as apprenticeship learning. Another approach to solve the uncertainty in reward is to continuously update the reward functions as per the state so that the most optimized policy is generated. This approach is called inverse reinforcement learning.

Robot reinforcement learning is a hard problem to solve owing to many challenges. The first ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content