Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Why asynchronous methods?

Asynchronous methods for deep reinforcement learning was published in June 2016 by the combined team of Google DeepMind and MILA (https://arxiv.org/pdf/1602.01783.pdf).  It was faster and was able to show good results on a multi-core CPU instead of using a GPU. Asynchronous methods also work on continuous as well as discrete action spaces.

If we recall the approach of deep Q-network, we use experience replay as a storage to store all the experiences, and then use a random sample from that to train our deep neural network, which in turn predicts maximum Q-value for the most favorable action. But, it has the drawbacks of high memory usage and heavy computation over time. The basic idea behind this was to overcome this ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content