Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Text summarization

Text summarization is the process of automatically generating summarized text of the document test fed as an input by retaining the important information of the document. Text summarization condenses a big set of information in a concise manner; therefore, summaries play an important role in applications related to news/articles, text search, and report generation.

There are two types of summarization algorithms:

  • Extractive summarization: Creates summaries by copying parts of the text from the input text
  • Abstractive summarization: Generates new text by rephrasing the text or using new words that were not in the input text

The attention-based encoder decoder model created for machine translation (Bahdanau et al., 2014) ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content