Contents
Preface xv
Preface to the First Edition xvii
Chapter 1 Fundamentals 1
1.1. Characteristics of Femtosecond Light Pulses 1
1.1.1. Complex Representation of the Electric Field 1
1.1.2. Power, Energy, and Related Quantities 6
1.1.3. Pulse Duration and Spectral Width 9
1.1.4. Wigner Distribution, Second-Order Moments,
Uncertainty Relations 12
1.2. Pulse Propagation 20
1.2.1. The Reduced Wave Equation 21
1.2.2. Retarded Frame of Reference 26
1.2.3. Dispersion 30
1.2.4. Gaussian Pulse Propagation 33
1.2.5. Complex Dielectric Constant 38
1.3. Interaction of Light Pulses with Linear Optical Elements 42
1.4. Generation of Phase Modulation 44
1.5. Beam Propagation 46
1.5.1. General 46
1.5.2. Analogy between Pulse and Beam Propagation 49
1.5.3. Analogy between Spatial and Temporal
Imaging 50
1.6. Numerical Modeling of Pulse Propagation 53
1.7. Space–Time Effects 56
1.8. Problems 57
Bibliography 58
Chapter 2 Femtosecond Optics 61
2.1. Introduction 61
2.2. White Light and Short Pulse Interferometry 64
v
vi Contents
2.3. Dispersion of Interferometric Structures 70
2.3.1. Mirror Dispersion 70
2.3.2. Fabry–Perot and Gires–Tournois Interferometer 73
2.3.3. Chirped Mirrors 80
2.4. Focusing Elements 82
2.4.1. Singlet Lenses 82
2.4.2. Space–Time Distribution of the Pulse
Intensity at the Focus of a Lens 86
2.4.3. Achromatic Doublets 91
2.4.4. Focusing Mirrors 92
2.5. Elements with Angular Dispersion 94
2.5.1. Introduction 94
2.5.2. Tilting of Pulse Fronts 95
2.5.3. GVD through Angular Dispersion—General 100
2.5.4. GVD of a Cavity Containing a Single Prism 102
2.5.5. Group Velocity Control with Pairs of Prisms 105
2.5.6. GVD Introduced by Gratings 117
2.5.7. Grating Pairs for Pulse Compressors 120
2.5.8. Combination of Focusing and Angular
Dispersive Elements 122
2.6. Wave-Optical Description of Angular Dispersive
Elements 124
2.7. Optical Matrices for Dispersive Systems 130
2.8. Numerical Approaches 136
2.9. Problems 136
Bibliography 140
Chapter 3 Light–Matter Interaction 143
3.1. Density Matrix Equations 144
3.2. Pulse Shaping with Resonant Particles 154
3.2.1. General 154
3.2.2. Pulses Much Longer Than the Phase
Relaxation Time (τ
p
T
2
) 156
3.2.3. Phase Modulation by Quasi-Resonant
Interactions 161
3.2.4. Pulse Durations Comparable with or Longer
Than the Phase Relaxation Time (τ
p
T
2
) 165
3.3. Nonlinear, Nonresonant Optical Processes 166
3.3.1. General 166
3.3.2. Noninstantaneous Response 168
3.3.3. Pulse Propagation 170
Contents vii
3.4. Second Harmonic Generation (SHG) 172
3.4.1. Type I Second Harmonic Generation 173
3.4.2. Second Harmonic Type II: Equations for
Arbitrary Phase Mismatch and
Conversion Efficiencies 180
3.4.3. Pulse Shaping in Second Harmonic
Generation (Type II) 183
3.4.4. Group Velocity Control in SHG through
Pulse Front Tilt 185
3.5. Optical Parametric Interaction 188
3.5.1. Coupled Field Equations 188
3.5.2. Synchronous Pumping 190
3.5.3. Chirp Amplification 190
3.6. Third-Order Susceptibility 192
3.6.1. Fundamentals 192
3.6.2. Short Samples with Instantaneous Response 195
3.6.3. Short Samples and Noninstantaneous
Response 197
3.6.4. Counter-Propagating Pulses and Third-Order
Susceptibility 199
3.7. Continuum Generation 202
3.8. Self-Focusing 205
3.8.1. Critical Power 205
3.8.2. The Nonlinear Schrödinger Equation 208
3.9. Beam Trapping and Filaments 209
3.9.1. Beam Trapping 209
3.9.2. Ultrashort Pulse Self-Focusing 212
3.10. Problems 213
Bibliography 215
Chapter 4 Coherent Phenomena 221
4.1. From Coherent to Incoherent Interactions 221
4.2. Coherent Interactions with Two-Level Systems 225
4.2.1. Maxwell–Bloch Equations 225
4.2.2. Rate Equations 229
4.2.3. Evolution Equations 230
4.2.4. Steady-State Pulses 239
4.3. Multiphoton Coherent Interaction 243
4.3.1. Introduction 243
4.3.2. Multiphoton Multilevel Transitions 245
4.3.3. Simplifying a N-Level System to a
Two-Level Transition 258
viii Contents
4.3.4. Four Photon Resonant Coherent Interaction 262
4.3.5. Miscellaneous Applications 268
4.4. Problems 272
Bibliography 273
Chapter 5 Ultrashort Sources I: Fundamentals 277
5.1. Introduction 277
5.1.1. Superposition of Cavity Modes 277
5.1.2. Cavity Modes and Modes of a
Mode-Locked Laser 280
5.1.3. The “Perfect” Mode-Locked Laser 283
5.1.4. The “Common” Mode-Locked Laser 285
5.1.5. Basic Elements and Operation of a fs Laser 291
5.2. Circulating Pulse Model 293
5.2.1. General Round-Trip Model 293
5.2.2. Continuous Model 295
5.2.3. Elements of a Numerical Treatment 298
5.2.4. Elements of an Analytical Treatment 300
5.3. Evolution of the Pulse Energy 303
5.3.1. Rate Equations for the Evolution of the
Pulse Energy 304
5.3.2. Connection of the Model to Microscopic
Parameters 311
5.4. Pulse Shaping in Intracavity Elements 314
5.4.1. Saturation 315
5.4.2. Nonlinear Nonresonant Elements 317
5.4.3. Self-Lensing 320
5.4.4. Summary of Compression Mechanisms 323
5.4.5. Dispersion 323
5.5. Cavities 325
5.5.1. Cavity Modes and ABCD Matrix Analysis 325
5.5.2. Astigmatism and Its Compensation 328
5.5.3. Cavity with a Kerr Lens 332
5.6. Problems 335
Bibliography 337
Chapter 6 Ultrashort Sources II: Examples 341
6.1. Synchronous Mode-Locking 341
6.2. Hybrid Mode-Locking 345
6.3. Additive Pulse Mode-Locking 346
6.3.1. Generalities 346
6.3.2. Analysis of APML 348

Get Ultrashort Laser Pulse Phenomena, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.