Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Large model enough to overfit

Once you have a model that has enough capacity to beat your baseline score, increase your baseline capacity. A few simple tricks to increase the capacity of your architecture are as follows:

  • Add more layers to your existing architecture
  • Add more weights to the existing layers
  • Train it for more epochs

We generally train the model for an adequate number of epochs. Stop it when the training accuracy keeps increasing and the validation accuracy stops increasing and probably starts dropping; that's where the model starts overfitting. Once we reach this stage, we need to apply regularization techniques.

Remember, the number of layers, size of layers, and number of epochs may change from problem to problem. A smaller ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content