Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Language modeling

We will learn how to teach a recurrent neural network (RNN) how it can create a sequence of text. In simple words, the RNN model that we will build now will be able to predict the next word, given some context. This is just like the Swift app on your phone, which guesses the next word that you are typing. The ability to generate sequential data has applications in many different areas, such as:

  • Image captioning
  • Speech recognition
  • Language translation
  • Automatic email reply

We learnt in Chapter 6, Deep Learning with Sequence Data and Text, that RNNs are tough to train. So, we will be using a variant of RNN called Long Short-Term Memory (LSTM). The development of the LSTM algorithm started in 1997 but became popular in the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content