Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

PyTorch

PyTorch, and most of the other deep learning frameworks, can be used for two different things:

  • Replacing NumPy-like operations with GPU-accelerated operations
  • Building deep neural networks

What makes PyTorch increasingly popular is its ease of use and simplicity. Unlike most other popular deep learning frameworks, which use static computation graphs, PyTorch uses dynamic computation, which allows greater flexibility in building complex architectures.

PyTorch extensively uses Python concepts, such as classes, structures, and conditional loops, allowing us to build DL algorithms in a pure object-oriented fashion. Most of the other popular frameworks bring their own programming style, sometimes making it complex to write new algorithms ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content