Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Creating learnable parameters

In our neural network example, we have two learnable parameters, w and b, and two fixed parameters, x and y. We have created variables x and y in our get_data function. Learnable parameters are created using random initialization and have the require_grad parameter set to True, unlike x and y, where it is set to False. There are different practices for initializing learnable parameters, which we will explore in the coming chapters. Let's take a look at our get_weights function:

def get_weights():    w = Variable(torch.randn(1),requires_grad = True)    b = Variable(torch.randn(1),requires_grad=True)    return w,b

Most of the preceding code is self-explanatory; torch.randn creates a random value of any given shape.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content