February 2018
Intermediate to advanced
262 pages
6h 59m
English
Training the model is the same process as for our previous dogs and cats image classification problems. The following code snippet does the training of our model on the provided dataset:
def fit(epoch,model,data_loader,phase='training',volatile=False): if phase == 'training': model.train() if phase == 'validation': model.eval() volatile=True running_loss = 0.0 running_correct = 0 for batch_idx , (data,target) in enumerate(data_loader): if is_cuda: data,target = data.cuda(),target.cuda() data , target = Variable(data,volatile),Variable(target) if phase == 'training': optimizer.zero_grad() output = model(data) loss = F.nll_loss(output,target) running_loss += F.nll_loss(output,target,size_average=False).data[0] preds = output.data.max(dim=1,keepdim=True)[1] ...