Network implementation 

As we have all the parameters (x, w, b, and y) required to implement the network, we perform a matrix multiplication between w and x. Then, sum the result with b. That will give our predicted y. The function is implemented as follows:

def simple_network(x):    y_pred = torch.matmul(x,w)+b    return y_pred

PyTorch also provides a higher-level abstraction in torch.nn called layers, which will take care of most of these underlying initialization and operations associated with most of the common techniques available in the neural network. We are using the lower-level operations to understand what happens inside these functions. In later chapters, that is Chapter 5, Deep Learning for Computer Vision and Chapter 6, Deep Learning ...

Get Deep Learning with PyTorch now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.