Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

View

It is a common practice to use a fully connected, or linear, layer at the end of most networks for an image classification problem. We are using a two-dimensional convolution that takes a matrix of numbers as input and outputs another matrix of numbers. To apply a linear layer, we need to flatten the matrix which is a tensor of two-dimensions to a vector of one-dimension. The following example will show you how view works:

Let's look at the code used in our network that does the same:

x.view(-1, 320)

As we saw earlier, the view method will flatten an n-dimension tensor to a one-dimensional tensor. In our network, the first dimension ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content