Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Working with text data

Text is one of the commonly used sequential data types. Text data can be seen as either a sequence of characters or a sequence of words. It is common to see text as a sequence of words for most problems. Deep learning sequential models such as RNN and its variants are able to learn important patterns from text data that can solve problems in areas such as:

  • Natural language understanding
  • Document classification
  • Sentiment classification

These sequential models also act as important building blocks for various systems, such as question and answering (QA) systems.

Though these models are highly useful in building these applications, they do not have an understanding of human language, due to its inherent complexities. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content