Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Three kinds of machine learning problems

In all our previous examples, we tried to solve either classification (predicting cats or dogs) or regression (predicting the average time users spend in the platform) problems. All these are examples of supervised learning, where the goal is to map the relationship between training examples and their targets and use it to make predictions on unseen data.

Supervised learning is just one part of machine learning, and there are other different parts of machine learning. There are three different kinds of machine learning:

  • Supervised learning
  • Unsupervised learning
  • Reinforcement learning

Let's look in detail at the kinds of algorithms.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content