Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Deep Learning for Computer Vision

In Chapter 3, Diving Deep into Neural Networks, we built an image classifier using a popular Convolutional Neural Network (CNN) architecture called ResNet, but we used this model as a black box. In this chapter, we will cover the important building blocks of convolutional networks. Some of the important topics that we will be covering in this chapter are:

  • Introduction to neural networks
  • Building a CNN model from scratch
  • Creating and exploring a VGG16 model
  • Calculating pre-convoluted features
  • Understanding what a CNN model learns
  • Visualizing weights of the CNN layer

We will explore how we can build an architecture from scratch for solving image classification problems, which are the most common use cases. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content