Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Modern network architectures

One of the important things that we do when the deep learning model fails to learn is to add more layers to the model. As you add layers the model accuracy improves and then starts saturating. It starts degrading as you keep on adding more layers. Adding more layers beyond a certain number will add certain challenges, such as vanishing or exploding gradients, which is partially solved by carefully initializing weights and introducing intermediate normalizing layers. Modern architectures, such as residual network (ResNet) and Inception, try to solve this problem by introducing different techniques, such as residual connections.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content