Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Fundamentals of Machine Learning

In the previous chapters, we saw practical examples of how to build deep learning models to solve classification and regression problems, such as image classification and average user view predictions. Similarly, we developed an intuition on how to frame a deep learning problem. In this chapter, we will take a look at how we can attack different kinds of problems and different tweaks that we will potentially end up using to improve our model's performance on our problems.

In this chapter, we will explore:

  • Other forms of problems beyond classification and regression
  • Problems with evaluation, understanding overfitting, underfitting, and techniques to solve them
  • Preparing data for deep learning

Remember, most ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content