Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Vishnu Subramanian
February 2018
Intermediate to advanced
262 pages
6h 59m
English
Packt Publishing
Content preview from Deep Learning with PyTorch

Loading data

Preparing data for deep learning algorithms could be a complex pipeline by itself. PyTorch provides many utility classes that abstract a lot of complexity such as data-parallelization through multi-threading, data-augmenting, and batching. In this chapter, we will take a look at two of the important utility classes, namely the Dataset class and the DataLoader class. To understand how to use these classes, let's take the Dogs vs. Cats dataset from Kaggle (https://www.kaggle.com/c/dogs-vs-cats/data) and create a data pipeline that generates a batch of images in the form of PyTorch tensors.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781788624336Supplemental Content