Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
图论及其概念
|
19
图的
最大密度
是指其完全图中可能存在的关系数。可以通过公式
2
)1(
N
Max
−
=
N
D
来计算,
其中
N
为节点数。使用公式
)1(
)(2
D
−
=
NN
R
来度量
实际密度
,其中
R
是关系数。图
2-10
展示
了
3
个度量无向图实际密度的例子。
稀疏图
密度
= 0.3
稠密图
密度
= 0.8
完全图(团)
密度
= 1.0
D
=
−
25
66
1
()
()
D
=
−
21
2
66
1
()
()
D
=
−
21
5
66
1
()
()
图
2-10
:检查图的密度有助于评估意外的结果
虽然没有严格的分界线,但是任何实际密度接近最大密度的图都可以看作稠密图。大多数
基于真实网络的图较为稀疏,且节点总数和关系总数之间近似于线性相关,在物理因素发
挥作用的情况下更是如此,例如一个节点能够连接多少电线、管道、道路或友谊等都是有
实际限制的。
针对极其稀疏或稠密的图执行某些算法会返回无意义的结果。一方面,如果图太稀疏,那
么可能没有足够的关系来支撑算法计算出有用的结果。另一方面,在连接非常稠密的节点
之间不会有太多额外信息,这是因为它们的关系已经足够紧密了。高密度会扭曲一些结果
或者增加计算复杂度。在这些情况下,过滤相关子图是一种实用方法。
2.3.6
单部图
、
二部图和
k
部图
大多数网络包含具有多种节点和关系的数据,然而图算法通常只考虑一种节点和一种关
系。只有一种节点和一种关系的图有时称为
单部图
。
二部图
的节点可以划分成两个集合,其关系仅连接一个集合的节点和另一个集合的节点,
如图
2-11
所示。该图有两个节点集合:一个观众集合和一个电视剧集合,而且只存在两个 ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678