Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
路径查找算法和图搜索算法
|
61
4.8
随机游走算法
随机游走算法提供了图中某条随机路径上的一个节点集合。
1905
年,
Karl
Pearson
在给
《自然》杂志的一封题为“
The Problem of the Random Walk
”的信中首次提到这个术语。虽
然这一概念可以追溯到更早,但是直到最近,随机游走算法才被应用于网络科学中。
有时也将随机游走描述为类似于一个醉汉穿行城市。他知道自己要到达的方向或终点,但
路线可能会非常迂回。
该算法从某个节点开始,带有点随机性地沿着某个关系前进——向前或向后,到达邻节
点,然后从当前节点开始执行相同操作,以此类推,直到达到设定路径长度为止。(之所
以说“带有点随机性”,是因为节点的关系数量及其邻节点的关系数量会影响经过该节点
的概率。)
4.8.1
何时使用随机游走算法
当需要随机生成一组相互连接的节点时,可以将随机游走算法作为其他算法的一部分或数
据管道使用。
示范用例如下。
•
在
node2vec
算法和
graph2vec
算法中用于创建节点嵌入。这些节点嵌入可以用作神经网
络的输入。
•
在
Walktrap
和
Infomap
社团发现算法中使用。如果随机游走算法重复返回一个较小的节
点集合,则表明该节点集合可能具有社团结构。
•
在机器学习模型的训练过程中使用,参见
David Mack
的论文“
Review Prediction with
Neo4j and TensorFlow
”。
还可以阅读由
N.
Masuda
、
M. A.
Porter
和
R. Lambiotte ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678