Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
路径查找算法和图搜索算法
|
41
路径。
1956
年,
Edsger Dijkstra
提出了其中最著名的一种算法。
Edsger
Dijkstra
的最短路径算法首先查找从起始节点到与其直接连接的节点的最小权重关
系。该算法追踪这些权重并移动到“最近”的节点,然后针对当前节点执行同一计算,但
是现在的权重是从起始节点起算的累计值。算法继续执行,计算一条累计权重“曲线”,
总是选择累计权重最小的路径前进,直至到达目标节点为止。
在图分析中描述关系和路径时使用了
权重
、
代价
、
距离
和
跳
等术语。“权重”
是关系的某一特定性质的数值型取值。“代价”的用法与之类似,但更常用
于考察路径的总权重。
“距离”在算法中通常用于表示节点对之间的遍历代价,而且并不要求是实
际的距离。“跳”通常用来表示两个节点之间的关系数量。有时会组合使用
这些词,比如“到达伦敦的距离为
5
跳”或“那是这段距离的最小代价”。
4.4.1
何时使用最短路径算法
基于跳数或加权关系值,使用最短路径算法可以找到节点对之间的最优路线,例如它可以
实时求解分离度以及点与点之间的最短距离或最经济的路线,也可以使用该算法直接探察
特定节点之间的连通情况。
示范用例如下。
•
查找两地间的行进方向。像谷歌地图之类的互联网地图工具可以使用最短路径算法(或
类似变体)提供驾驶导航服务。
•
找出社交网络中人与人之间的分离度,比如当你在
LinkedIn
上查看某人的资料时,图
中会显示你们之间相隔多少人,并列出双方的共有联系人。
•
根据某个演员和
Kevin Bacon
共同出演的电影来查找他们之间的距离 ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678