Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
90
|
第
5
章
与
Spark
示例一样,这里在运行
PageRank
算法时,图中的关系没有加
权,因此每个关系都是平等的。在传递给
PageRank
程序的配置中包含
weightProperty
属性,通过该属性可以设置关系权重。例如关系的属性
weight
代表权重,可以把下述配置传递给程序:
weightProperty: "weight"
。
5.5.7
PageRank
算法变体
:
个性化
PageRank
算法
个性化
PageRank
(
personalized
PageRank
,
PPR
)是
PageRank
算法的一种变体,它从特定
节点出发,计算图中节点的重要程度。对于
PPR
,随机跳转指的是返回到给定的起始节点
集。这种偏向性结果(或者说个性化)针对的是起始节点。这种偏向和本地化使得
PPR
对
于靶向性强的推荐非常有用。
使用
Spark
实现个性化
PageRank
算法
可以通过传递
sourceId
参数来计算给定节点的
PPR
得分。下面的代码计算
Doug
的
PPR
得分:
me = "Doug"
results = g.pageRank(resetProbability=0.15, maxIter=20, sourceId=me)
people_to_follow = results.vertices.sort("pagerank", ascending=False)
already_follows = list(g.edges.filter(f"src = '{me}'").toPandas()["dst"])
people_to_exclude ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678