Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
中心性算法
|
75
user
centrality
Alice
1.0
Doug
1.0
David
1.0
Bridget
0.7142857142857143
Michael
0.7142857142857143
Amy
0.6666666666666666
James
0.6666666666666666
Charles
0.625
Mark
0.625
结果与
Spark
算法实现的相同,与之前一样,分值表示他们与子图(而不是整个图)中其
他用户的亲密程度。
根据接近中心性算法的严格解释,图中所有节点的得分都是∞,因为每个节
点至少有一个无法到达的节点,不过按照每个分量分别计算得分通常更有用。
在理想情况下,我们希望得到整个图的接近中心性指标,因此接下来介绍接近中心性算法
的一些变体。
5.3.4
接近中心性算法变体
:
Wasserman & Faust
算法
Stanley Wasserman
和
Katherine
Faust
提出了一个改进公式,用于计算包含多个非连通子图
的图的接近中心性得分。他们在《社会网络分析:方法与应用》一书中详细介绍了该公
式。该公式得到的结果是群组中可达节点数与到可达节点平均距离的比值。
公式如下:
1
1
11
()
1
(,
)
WF
n
v
nn
Cu
N
du
v
−
=
−−
=
−
∑
其中:
•
u
为节点;
•
N
为总的节点数;
•
n
是与
u
在同一分量中的节点的数量;
•
d
(
u
,
v
)
是另一节点
v
到
u
的最短距离。
传递参数
improved: true
,告诉接近中心性计算程序采用该公式。
76
|
第
5
章
下面的查询使用 ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678