Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
84
|
第
5
章
5.5.1
影响力
直观地说,相对于那些不太重要的节点而言,与较为重要的节点相连对节点的影响更大。
衡量影响力通常涉及对节点的评分,要用到加权关系,之后还要在多次迭代中更新分值。
有时要对所有节点进行评分,但有时也可随机选取节点作为代表性样本。
请记住,中心性指标代表了某节点相对于其他节点的重要性。中心性是对节
点潜在影响力的排序,而不是对实际影响力的度量。比如说,在网络中有两
个人处于中心地位,但可能由于种种原因,其实际影响力会转移到其他人身
上。量化实际影响力是设计附加影响指标中很活跃的一个研究领域。
5.5.2
PageRank
算法公式
谷歌公司在最初的论文中将
PageRank
算法定义为:
(
1)
(
)
(
)
(1
)
(
1)
(
)
PR
T
PR
Tn
PR
u
d
d
CT
CTn
=−+
++
解释如下。
•
假设页面
u
中含有从第
T
1
页到第
Tn
页的引用。
•
d
是取值介于
0
~
1
的阻尼系数,通常设为
0.85
。可以将其视为用户将持续单击的概率。
这有助于最小化等级沉没,稍后解释。
•
1 –
d
是不考虑任何关系直接到达节点的概率。
•
C
(
Tn
)
定义为节点
T
的出度。
图
5-11
展示了
PageRank
算法如何持续更新节点等级,直到算法收敛或满足设置的迭代次
数为止。
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678