Skip to Content
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
For Enterprise
For Government
For Higher Ed
For Individuals
For Marketing
Explore Skills
Cloud Computing
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud
Cloud Migration
Cloud Deployment
Cloud Platforms
Data Engineering
Data Warehouse
SQL
Apache Spark
Microsoft SQL Server
MySQL
Kafka
Data Lake
Streaming & Messaging
NoSQL Databases
Relational Databases
Data Science
Pandas
R
MATLAB
SAS
D3
Power BI
Tableau
Statistics
Exploratory Data Analysis
Data Visualization
AI & ML
Generative AI
Machine Learning
Artificial Intelligence (AI)
Deep Learning
Reinforcement Learning
Natural Language Processing
TensorFlow
Scikit-Learn
Hyperparameter Tuning
MLOps
Programming Languages
Java
JavaScript
Spring
Python
Go
C#
C++
C
Swift
Rust
Functional Programming
Software Architecture
Object-Oriented
Distributed Systems
Domain-Driven Design
Architectural Patterns
IT/Ops
Kubernetes
Docker
GitHub
Terraform
Continuous Delivery
Continuous Integration
Database Administration
Computer Networking
Operating Systems
IT Certifications
Security
Network Security
Application Security
Incident Response
Zero Trust Model
Disaster Recovery
Penetration Testing / Ethical Hacking
Governance
Malware
Security Architecture
Security Engineering
Security Certifications
Design
Web Design
Graphic Design
Interaction Design
Film & Video
User Experience (UX)
Design Process
Design Tools
Business
Agile
Project Management
Product Management
Marketing
Human Resources
Finance
Team Management
Business Strategy
Digital Transformation
Organizational Leadership
Soft Skills
Professional Communication
Emotional Intelligence
Presentation Skills
Innovation
Critical Thinking
Public Speaking
Collaboration
Personal Productivity
Confidence / Motivation
Features
All features
Verifiable skills
AI Academy
Courses
Certifications
Interactive learning
Live events
Superstreams
Answers
Insights reporting
Radar Blog
Buy Courses
Plans
Sign In
Try Now
O'Reilly Platform
book
数据分析之图算法: 基于Spark和Neo4j
by
Mark Needham
,
Amy E. Hodler
September 2020
Intermediate to advanced
213 pages
5h 25m
Chinese
Posts & Telecom Press
Content preview from
数据分析之图算法: 基于Spark和Neo4j
64
第
5
章
中心性算法
中心性算法用于理解图中特定节点的作用及其对网络的影响。这些算法很有用,因为它们
可以识别最重要的节点,帮助我们了解群组动态,例如可信度、可访问性、事物的传播速
度以及群组之间的“桥梁”等。尽管其中许多算法是为社交网络分析而发明的,但在其他
很多行业和领域中也有应用。
本章将介绍以下算法。
•
度中心性算法,可作为连通度的基准指标。
•
接近中心性算法,用于度量节点在群组中的中心程度,包括两种针对不连通群组的变体。
•
中间中心性算法
1
,用于寻找控制点,包括一种近似的替代方法。
•
PageRank
算法,用于了解总体影响,包括流行的个性化选项。
度量内容不同,中心性算法产生的结果也会显著不同。如果结果不理想,就
应检查所用算法是否与其设计初衷一致。
本章将解释这些算法的工作原理,并给出
Spark
示例及
Neo4j
示例。如果算法在其中一个
平台上不可用或者差异不明显,则仅提供一个平台的示例。
图
5-1
展示了中心性算法所针对的各种问题之间的区别,表
5-1
是每种算法及其示范用例
的速查表。
注
1
:
Betweenness Centrality
,也译作中介中心性算法。——译者注
中心性算法
|
65
度中心性算法
节点的连接数量有多少?
节点
A
的度最高
接近中心性算法
在图或子图中,哪个节点
更容易到达其他各节点? ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial
You might also like
大数据项目管理:从规划到实现
Ted Malaska, Jonathan Seidman
Presto实战
Matt Fuller, Manfred Moser, Martin Traverso
数据库系统内幕
Alex Petrov
精實企業|高績效組織如何達成創新規模化
Jez Humble, Joanne Molesky, Barry O'Reilly
Publisher Resources
ISBN: 9787115546678