## Book description

**Explore and master the most important algorithms for solving complex machine learning problems.**

**About This Book**

- Discover high-performing machine learning algorithms and understand how they work in depth.
- One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation.
- Master concepts related to algorithm tuning, parameter optimization, and more

**Who This Book Is For**

This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

**What You Will Learn**

- Explore how a ML model can be trained, optimized, and evaluated
- Understand how to create and learn static and dynamic probabilistic models
- Successfully cluster high-dimensional data and evaluate model accuracy
- Discover how artificial neural networks work and how to train, optimize, and validate them
- Work with Autoencoders and Generative Adversarial Networks
- Apply label spreading and propagation to large datasets
- Explore the most important Reinforcement Learning techniques

**In Detail**

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour.

Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks.

If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.

**Style and approach**

A hands-on guide filled with real-world examples of popular algorithms used for data science and machine learning

## Publisher resources

## Table of contents

- Title Page
- Copyright and Credits
- Dedication
- Packt Upsell
- Contributors
- Preface
- Machine Learning Model Fundamentals
- Introduction to Semi-Supervised Learning
- Graph-Based Semi-Supervised Learning
- Bayesian Networks and Hidden Markov Models
- EM Algorithm and Applications
- Hebbian Learning and Self-Organizing Maps
- Clustering Algorithms
- Ensemble Learning
- Neural Networks for Machine Learning
- Advanced Neural Models
- Autoencoders
- Generative Adversarial Networks
- Deep Belief Networks
- Introduction to Reinforcement Learning
- Advanced Policy Estimation Algorithms
- Other Books You May Enjoy

## Product information

- Title: Mastering Machine Learning Algorithms
- Author(s):
- Release date: May 2018
- Publisher(s): Packt Publishing
- ISBN: 9781788621113

## You might also like

book

### 40 Algorithms Every Programmer Should Know

Learn algorithms for solving classic computer science problems with this concise guide covering everything from fundamental …

book

### Machine Learning Algorithms - Second Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms …

book

### Python: Advanced Guide to Artificial Intelligence

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems …

book

### Statistics for Machine Learning

Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics …