Fuzzy C-means

We have already talked about the difference between hard and soft clustering, comparing K-means with Gaussian mixtures. Another way to address this problem is based on the concept of fuzzy logic, which was proposed for the first time by Lotfi Zadeh in 1965 (for further details, a very good reference is An Introduction to Fuzzy Sets, Pedrycz W., Gomide F., The MIT Press). Classic logic sets are based on the law of excluded middle that, in a clustering scenario, can be expressed by saying that a sample xi can belong only to a single cluster cj. Speaking more generally, if we split our universe into labeled partitions, a hard clustering approach will assign a label to each sample, while a fuzzy (or soft) approach allows managing ...

Get Mastering Machine Learning Algorithms now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.