Semi-supervised Support Vector Machines (S3VM)

When we discussed the cluster assumption, we also defined the low-density regions as boundaries and the corresponding problem as low-density separation. A common supervised classifier which is based on this concept is a Support Vector Machine (SVM), the objective of which is to maximize the distance between the dense regions where the samples must be. For a complete description of linear and kernel-based SVMs, please refer to Bonaccorso G., Machine Learning Algorithms, Packt Publishing; however, it's useful to remind yourself of the basic model for a linear SVM with slack variables ξi:

This model ...

Get Mastering Machine Learning Algorithms now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.