Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

NumPy random numbers

An important part of any simulation is the ability to generate random numbers. For this purpose, NumPy provides various routines in the submodule random. It uses a particular algorithm, called the Mersenne Twister, to generate pseudorandom numbers.

First, we need to define a seed that makes the random numbers predictable. When the value is reset, the same numbers will appear every time. If we do not assign the seed, NumPy automatically selects a random seed value based on the system's random number generator device or on the clock:

>>> np.random.seed(20)

An array of random numbers in the [0.0, 1.0] interval can be generated as follows:

>>> np.random.rand(5)
array([0.5881308, 0.89771373, 0.89153073, 0.81583748, 
 0.03588959]) ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link