Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Decision tree

Classification trees are used to separate the data into classes belonging to the response variable. The response variable usually has two classes: Yes or No (1 or 0) and sunny or rain. If the target variable has more than two categories, then C4.5 can be applicable. C4.5 improves the ID3 algorithm for the continuous attributes, the discrete attributes, and the post construction process.

Similar to most learning algorithms, the classification tree algorithm analyzes a training set and then builds a classifier based on that training so that with new data in the future, it can classify the training as well as the new data correctly. A test example is an input object, and the algorithm must predict an output value. Classification trees ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link