March 2017
Beginner to intermediate
866 pages
18h 4m
English
In this chapter we showed how you can work with time series in Pandas. We introduced two index types, the DatetimeIndex and the TimedeltaIndex and explored their building blocks in depth. Pandas comes with versatile helper functions that take much of the pain out of parsing dates of various formats or generating fixed frequency sequences. Resampling data can help get a more condensed picture of the data, or it can help align various datasets of different frequencies to one another. One of the explicit goals of Pandas is to make it easy to work with missing data, which is also relevant in the context of upsampling.
Finally, we showed how time series can be visualized. Since matplotlib and Pandas are natural companions, we discovered that ...