Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Array indexing

Elements from NumPy arrays can be selected using four methods: scalar selection, slicing, numerical indexing, and logical (or Boolean) indexing. Scalar selection and slicing are the basic methods to access elements in an array, which has already been discussed here. Numerical indexing and logical indexing are closely related and allows more flexible selection. Numerical indexing uses lists or arrays of locations to select elements, whereas logical indexing uses arrays that contain Boolean values to select elements.

Numerical indexing

Numerical indexing is an alternative to slice notation. The idea in numerical indexing is to use coordinates to select elements. This is similar to slicing. Arrays created using numerical indexing create ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link