March 2017
Beginner to intermediate
866 pages
18h 4m
English
In this section, we will discuss missing, NaN, or null values, in Pandas data structures. It is a very common situation to arrive with missing data in an object. One such case that creates missing data is reindexing:
>>> df8 = pd.DataFrame(np.arange(12).reshape(4,3), columns=['a', 'b', 'c']) a b c 0 0 1 2 1 3 4 5 2 6 7 8 3 9 10 11 >>> df9 = df8.reindex(columns = ['a', 'b', 'c', 'd']) a b c d 0 0 1 2 NaN 1 3 4 5 NaN 2 6 7 8 NaN 4 9 10 11 NaN >>> df10 = df8.reindex([3, 2, 'a', 0]) a b c 3 9 10 11 2 6 7 8 a NaN NaN NaN 0 0 1 2
To manipulate missing values, we can use the isnull() or notnull() functions to detect the missing values in a Series object, as well as in a DataFrame object:
>>> df10.isnull() a b c 3 False ...