Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Model validation

Once the model has been built and evaluated, the next step is to validate the model. In the case of logistic regression models or classification models in general, we basically validate the model by comparing the actual class with the predicted class. There are various ways to do this, but the most famous and widely used is the Receiver Operating Characteristic (ROC) curve.

The ROC curve

An ROC curve is a graphical tool to understand the performance of a classification model. For a logistic regression model, a prediction can either be positive or negative. Also, this prediction can either be correct or incorrect.

There are four categories in which the predictions of a logistic regression model can fall:

Actual/predicted

Positive ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link