Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Summary

A logistic regression is a versatile technique used widely in the cases where the variable to be predicted is a binary (or categorical) variable. This chapter dives deep into the math behind the logistics regression and the process to implement it using the scikit-learn and statsmodel api modules. It is important to understand the math behind the algorithm so that the model is not used as a black box without knowing what is going on behind the hood. To recap, the following are the main takeaways from the chapter:

  • Linear regression wouldn't be an appropriate model to predict binary variables as the predictor variables can range from -infinity to +infinity, while the binary variable would be 0 or 1.
  • The odds of a certain event happening is ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link