Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Summary

In this chapter, we learned the following:

  • Clustering is an unsupervised predictive algorithm to club similar data points together and segregate the dissimilar points from each other. This algorithm finds the usage in marketing, taxonomy, seismology, public policy, and data mining.
  • The distance between two observations is one of the criteria on which the observations can be clustered together.
  • The distance between all the points in a dataset is best represented by an nxn symmetric matrix called a distance matrix.
  • Hierarchical clustering is an agglomerative mode of clustering wherein we start with n clusters (equal to the number of points in the dataset) that are agglomerated into a lesser number of cluster based on the linkages developed over ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link