Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Advanced uses of Pandas for data analysis

In this section we will consider some advanced Pandas use cases.

Hierarchical indexing

Hierarchical indexing provides us with a way to work with higher dimensional data in a lower dimension by structuring the data object into multiple index levels on an axis:

>>> s8 = pd.Series(np.random.rand(8), index=[['a','a','b','b','c','c', 'd','d'], [0, 1, 0, 1, 0,1, 0, 1, ]])
>>> s8
a  0    0.721652
   1    0.297784
b  0    0.271995
   1    0.125342
c  0    0.444074
   1    0.948363
d  0    0.197565
   1    0.883776
dtype: float64

In the preceding example, we have a Series object that has two index levels. The object can be rearranged into a DataFrame using the unstack function. In an inverse situation, the stack function can be used:

>>> s8.unstack() ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link