Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Chapter 4. Statistical Concepts for Predictive Modelling

There are a few statistical concepts, such as hypothesis testing, p-values, normal distribution, correlation, and so on without which grasping the concepts and interpreting the results of predictive models becomes very difficult. Thus, it is very critical to understand these concepts, before we delve into the realm of predictive modelling.

In this chapter, we will be going through and learning these statistical concepts so that we can use them in the upcoming chapters. This chapter will cover the following topics:

  • Random sampling and central limit theorem: Understanding the concept of random sampling through an example and illustrating the central limit theorem's application through an example. ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link