Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Principal component analysis

Principal component analysis (PCA) transforms the attributes of unlabeled data using a simple rearrangement and transformation with rotation. Looking at the data that does not have any significance, you can find ways to reduce dimensions this way. For instance, when a particular dataset looks similar to an ellipse when run at a particular angle to the axes, while in another transformed representation moves along the x axis and clearly has signs of no variation along the y axis, then it may be possible to ignore that.

k-means clustering is appropriate to cluster unlabeled data. Sometimes, one can use PCA to project data to a much lower dimension and then apply other methods, such as k-means, to a smaller and reduced ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link