Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Measuring prediction performance

We have already seen that the machine learning process consists of the following steps:

  • Model selection: We first select a suitable model for our data. Do we have labels? How many samples are available? Is the data separable? How many dimensions do we have? As this step is nontrivial, the choice will depend on the actual problem. As of Fall 2015, the scikit-learn documentation contains a much appreciated flowchart called choosing the right estimator. It is short, but very informative and worth taking a closer look at.
  • Training: We have to bring the model and data together, and this usually happens in the fit methods of the models in scikit-learn.
  • Application: Once we have trained our model, we are able to make predictions ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link