Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Transfer learning

So far, we've trained small models on toy datasets, where the training took no more than an hour. But if we want to work with large datasets, such as ImageNet, we would need a much bigger network that trains for a lot longer. More importantly, large datasets are not always available for the tasks we're interested in. Keep in mind that besides obtaining the images, they have to be labeled, and this could be expensive and time-consuming. So, what does a humble engineer do when they want to solve a real ML problem with limited resources? Enter transfer learning.

Transfer learning is the process of applying an existing trained ML model to a new, but related, problem. For example, we can take a network trained on ImageNet and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content