Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

K-means

K-means is a clustering algorithm that groups the elements of a dataset into k distinct clusters (hence the k in the name). Here is how it works:

  1. Choose k random points, called centroids, from the feature space, which will represent the center of each of the k clusters.
  2. Assign each sample of the dataset (that is, each point in the feature space) to the cluster with the closest centroid.
  3. For each cluster, we recomputed new centroids by taking the mean values of all the points in the cluster.
  4. With the new centroids, we repeat steps 2 and 3 until the stopping criteria is met.

The preceding method is sensitive to the initial choice of random centroids and it may be a good idea to repeat it with different initial choices. It's also possible ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content