Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Policy gradients with actor–critic

Actor-critic (AC) is a family of policy gradient algorithms similar to the temporal difference (TD) methods (Chapter 8, Reinforcement Learning Theory). That is, unlike Monte Carlo, an AC method doesn't have to play whole episodes to update the policy parameters θ. AC has two components:

  • The actor, which is the parameterized policy . The actor (agent) will use the policy to make decisions on what action to take next.
  • The critic, which is the state- or action value function approximation or (we introduced ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content