Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Driving policy with ChauffeurNet

In this section, we'll discuss a recent paper called ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst (https://arxiv.org/abs/1812.03079). It was released in December 2018 by Waymo, one of the leaders in the AV space. The following are some of the properties of the ChauffeurNet model:

  • It is a combination of two interconnected networks. The first is a CNN called FeatureNet, which extracts features from the environment. These features are fed as inputs to a second, recurrent network called AgentRNN, which them to determine the driving policy.
  • It uses imitation supervised learning similarly to the algorithms we described in the Imitation driving policy section. The training set ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content