January 2019
Intermediate to advanced
386 pages
11h 13m
English
As we have mentioned many times, 1-layer neural nets can only classify linearly separable classes. But there is nothing that prevents us from introducing more layers between the input and the output. These extra layers are called hidden layers. The following diagram demonstrates a 3-layer fully connected neural network with two hidden layers. The input layer has k input neurons, the first hidden layer has n hidden neurons, and the second hidden layer has m hidden neurons. The output, in this example, is the two classes y1 and y2. On top is the always-on bias neuron. A unit from one-layer is connected to all units from the previous and following layers (hence fully connected). Each connection has its own weight, ...