January 2019
Intermediate to advanced
386 pages
11h 13m
English
To illustrate how deep learning works, let's consider the task of recognizing a simple geometric figure, for example, a cube, as seen in the following diagram. The cube is composed of edges (or lines), which intersect in vertices. Let's say that each possible point in the three-dimensional space is associated with a neuron (forget for a moment that this will require an infinite number of neurons). All the points/neurons are in the first (input) layer of a multi-layer feed-forward network. An input point/neuron is active if the corresponding point lies on a line. The points/neurons that lie on a common line (edge) have strong positive connections to a single common edge/neuron in the next layer. Conversely, they have negative ...