Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

CTC

Standard RNN objective functions are defined independently for each sequence step; each step outputs its own independent label classification. This means that training data must be perfectly aligned with the target labels. However, a global objective function that maximizes the probability of a full correct labeling can be devised. The idea is to interpret the network outputs as a conditional probability distribution over all possible labeling sequences, given the full input sequence. The network can then be used as a classifier by searching for the most probable labeling, given the input sequence.

Connectionist Temporal Classification (CTC) is an objective function that defines a distribution over all the alignments with all the output ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content